Total phosphorus calibration of the Simple Refuge Screening Model Version 4 using optimization

Michael G. Waldon¹, Chunfang Chen², William Roth³, Ehab A. Meselhe^{2,4}

¹Everglades Program Team, A.R.M. Loxahatchee National Wildlife Refuge, Boynton Beach, FL 33473 (retired)

²Center for Louisiana Water Studies, Institute of Coastal Ecology and Engineering, University of Louisiana at Lafayette, LA 70504 ³Anchor QEA, Ocean Springs, MS

⁴The Water Institute of the Gulf, Baton Rouge, LA

Introduction

- Study Area
 - Freshwater remnant of the Northern Everglades
 - Located in Palm Beach County, Florida
 - Overlays Water Conservation Area 1 (WCA-1)
- Need for Modeling
 - Alterations to water quantity, quality, and timing have had various impacts on the Refuge
 - Assessment of various scenarios will guide future restoration efforts

Location of the Arthur R. Marshall Loxahatchee National Wildlife Refuge and other Everglades Water Conservation Areas (SFWMD, 2000).

Introduction

- Characteristics
 - Hydraulically isolated system
 - Area is approximately 58,275 ha
 - Two important features
 - Canal (4.03 km²)
 - Marsh (560 km²)
 - High concentrations
 enter via pumped
 inflows

Refuge marsh area (top) and rim canal (bottom). Photo Credit J. Arceneaux.

Modeling Suite -

4 models with varying levels of spatial aggregation

	Version /				Water
MODEL	Status	Canal Cells	Marsh Cells	Stage	Quality
SRSM	4.0 Completed	1	1/3	Y	Y
9-Compartment	1.0 Completed	3	6	Y	Y
39-Comartment	1.0 Update in development	11	28	Y	Y
Mike-Flood HD	2.0 Completed	Distributed	3,494	Y	
Mike-Flood AD	2.0 Completed	Distributed	3,494		Y

Modeled Attributes

- Stage, Volume, and Flow
- Chloride (Cl) Conservative (non-reactive) constituent, tracer
- Sulfate (SO₄) Nearly constant areal mass disappearance
- Total Phosphorus (TP) Model surface water concentration and storage using DMSTA2 kinetics

DMSTA2

- Developed by Drs. Bill Walker and Bob Kadlec
- Simulates TP removal in constructed wetlands
- Simple kinetic formulation
- Has pre-calibrated parameter sets (PEW, EM, ...)
- Primarily used as a design tool, but has other uses
- For more information http://www.wwwalker.net/

WQ Compartment Arrangement

- Model Structure
 - 4 compartments (cells)
 - 3 marsh
 - 1 canal
 - Nested concentrically

Compartment	Area (km ²)		
1	89.36		
2	224.1		
3	246.6		
4	4.033		

SRSM Water Quality cell arrangement.

Model Characteristics

- SRSM results represent spatially-aggregated canal and marsh values for all state variables (e.g. volume and mass)
- Model appropriate for applications with time scale of one day or longer
- Due to the spatially-aggregated compartment design of the model, it is of limited value in analysis of site specific events
- Concentric compartment design displays average propagation of constituents from canal to marsh interior

Model Attributes

- Assumptions
 - Average soil elevations are used for canal and marsh compartments
 - Water surface of canal and marsh are flat
 - Canal surface area is constant
 - Precipitation is uniform
 - Chloride is a conservative constituent
 - TP and SO4 are conservative constituents in the Canal compartment
- SRSM V4 runs under Berkeley-Madonna http://www.berkeleymadonna.com/
- Runtime information
 - Time step
 - *dt* = 0.005 day
 - Simulation period extended
 - Start: Jan-95
 - End: Dec-07
 - Completes 13-year simulation in ~ 7 minutes

Phosphorus Equations

Storage

$$\frac{dS}{dt} = F_C F_z k_1 S C - k_2 S^2 - k_3 S$$

S = temporary storage in biomass (mg/m²) C = concentration of surface water (mg/m³) $F_c =$ concentration multiplier $F_z =$ depth multiplier $k_I =$ maximum uptake rate (m³/mg-yr)

$$k_2 = \text{recycle rate (m^2/mg-yr)}$$

$$k_3 =$$
burial rate (1/yr)

Water Column Concentration

$$\frac{dhC}{dt} = L - QC - F_C F_z k_1 SC + k_2 S^2$$

h = water depth (m) L = loading rate in the cell (mg/m²-yr) * Includes transpiration (T) and deposition (WD and DD) Q = outflow (m/yr)

Total phosphorus water quality model schematic. Adapted from Walker and Kadlec (2006)

Phosphorus Equations

 Concentration Multiplier

 $F_c = \frac{0.3}{C+0.3}$

 F_c = concentration multiplier (dimensionless) C = TP concentration

- Depth Multiplier
 - Defined by the provided graph
 - dimensionless

Graph of the Depth Multiplier function for the Emergent and PEW data sets. Adapted from Walker and Kadlec (2006)

Marsh Cell 1: Daily Values (Total Phosphorus)

Marsh Cell 2: Daily Values (Total Phosphorus)

Marsh Cell 3: Daily Values (Total Phosphorus)

Phosphorus Storage (EM)

Recalibration

- DMSTA EM parameters work surprisingly well
- However, projected geometric mean corresponding to EVPA sampling is too low
- Used integral absolute error (IAE) in Berkeley-Madonna automated parameter optimization
- Identified new parameter set that gives lower mean error (bias) got geometric mean

Comparison of Calibrations with Observations

Consent Decree Level Excursions

Examination of Residual Error

What did we leave out of the model that is important in affecting TP concentration?

- Sulfate?
- Temperature dependence?

Observed Sulfate vs TP Residual (Modeled TP – Obs TP)

Temperature Dependence

- Biological/Chemical
 - carbonaceous degradation
 - nitrogenous degradation
 - sediment oxygen demand
 - nitrification
 - Denitrification
 - Photosynthesis
 - Algal growth
 - Respiration
 - OP-DIP
 - ON-NH3
- Physical
 - reaeration
 - dispersion

Temperature Correction Factor

Modified Arrhenius Relationship:

$$Rate_T = Rate_{20}\Theta^{(T-20)}$$

 Θ is temperature coefficient

TP With/Without Temperature Compensation

Conclusions

- SRSM is comparatively easy to use and provides rapid results
- SRSM predicts temporal trends in TP, and response to loading alterations
- The model is useful for screening some management alternatives or structural changes
- Prediction of geometric mean of EVPA (interior) sampling sites was improved by recalibration
- No apparent temperature effects on TP kinetic rates
- Sulfate was not related to model residual error, suggesting no significant relationship between sulfate concentration and TP kinetics

For more information:

- Email: mike@mwaldon.com
- Visit:
 - http://loxmodel.mwaldon.com
 - http://sofia.usgs.gov/lox_monitor_model

